

# **Objectives**

- Discuss the pressures to increase quality outcomes and decrease costs on healthcare organizations
- Describe how technology can support the uptake of evidence into nursing practice
- Review the history of alerts & reminders used to support reduction of CAUTI
- Discuss the implementation approach of alerts by a large health system to increase uptake of EBP for timely removal of urinary catheters
- Review before and after quality and financial metrics achieved



#### **Background**

- Reimbursement changes penalize organizations for hospital acquired infections (HAIs) (CMS, 2013)
- Urinary tract infections account for 35-40% HAIs

  (Blodgett 2009; In gr. al., 2014)

  (Blodgett 2009; In gr. al., 2014)

  (Blodgett 2009; In gr. al., 2014)
- 70-80% are attributed to urinary catheters (Blodgett, 2009; Lo et al., 2014)
- Catheter associated urinary tract infections (CAUTIs) are the most common HAI (American Nurses Association, 2015)

#### **Background**

- Healthcare Information Technology (HIT) is believed to support transformation through linkages between nursing care and patient outcomes
- Barriers to implement evidence based guidelines (EBG) include lack of time, access to articles, research and guidelines (Solomons & Spross, 2011; Melryk, 2012)
- Electronic healthcare records can improve the quality of care by offering EBG to nurses
- Alerts and reminders can help fill the gap between current practice and EBG

#### **Problem**

- Clinical decision support interventions should target EBG during decision making (Greenes, 2014)
- The use of alerts and reminders studied have been non-computerized (corria, Amory, Fraser, Saint, & Lipsky, 2003; Topal et al., 2005; Apisarnthanarak et al., 2007; Loeb et al., 2008; Bodgett, 2009; Bernard, Hunter, & Moore, 2012; Palmer, Lee, Dutta-Linn, Wroe, & Hartmann, 2013; Medings et al., 2014; Lo et al., 2014)
- Relationship between catheter days and urinary tract infections is known (Gould, C.V., Umscheid, C.A., Agarwai, R. K., Kuntz, G., & Pegues, D.A., 2010)
- Informatics strategies need to be focused on cueing nurses (American Nurses Association IANAL 2015)

## Significance

- Timely removal of catheter decreases CAUTI (Gould, C. V., Umscheid, C. A., Agarwal, R. K., Kuntz, G., & Pegues, D. A., 2010)
- Addressing the gap between EBG and removal of urinary catheter is key (Gould, et al., 2010)
- Incorporation of HIT solutions, such as clinical decision support, is important (American Nurses Association, 2015)
- Evaluation of effectiveness of alerts in the informatics literature is incomplete
   (Topaletal, 2005; Comia, Amony, Fraser, Saint, & Lipsky, 2003; Loeb et al., 2008; Apisamthanarak et al., 2007)

## Project Site specific example

- BSWH-NTX has implemented several tactics to eliminate CAUTI incidence;
  - Physician and Nursing leaders developed & approved an evidence based, nurse driven protocol (EBG) for timely removal of the urinary catheter
  - Integration and hardwiring into the physician & nursing workflow has been a challenge
    - Physician documentation indicating reason
    - Nursing assessment identifying catheter necessity
    - Inconsistent use of Catheter Management Protocol
  - Monitoring for utilization of the protocol and providing feedback loop has become labor intensive

#### What does the Literature say?

#### Incidence of CAUTI and association of urinary catheter days

- 12-16% of adult acute care patients will have a urinary catheter during their hospitalization (Lo et al., 2014)
- Risk of CAUTI is directly linked to the length of time the urinary catheter is in place (Comia et al., 2003; Topal et al., 2005; Apisarmthanarak et al., 2007)
- 20-50% of catheters do not meet appropriate indications for USE (Saint et al., 2000; Topal et al., 2005; Apisarnthanarak et al., 2007; Gould, Umscheid, Agarwal, Kuntz, & Pegues,
- 36% of physicians are unaware their patient has a urinary catheter (Saint et al., 2000)

#### **Literature Review**

#### Strategies to prompt removal of unnecessary urinary catheters

- Forming and initiating reminders to physicians is COMMOn (Cornia et al., 2003;Topal et al., 2005; Apisarnthanarak et al., 2007; Loeb et al., 2008; Blodgett, 2009; Palmer, Lee, Dutta-Linn, Wore, & Hartmann, 2013; Meddings et al., 2014; and Lo et al., 2014)
- Implementation of reminders is effective in decreasing catheter days
  - Most reminders are face to face, paper based or electronic orders to physicians and require staff resources (comia et al., 2003; Huang et al., 2004; Crouzet et al., 2007; Apisamthanarak et al., 2007; Loeb et al., 2008; Elpern et al., 2009; Fakih et al., 2012; Mostero 2012;
- Implementation of nurse driven protocol after physician documents catheter necessity criteria has been

SUCCESSful (Cornia et al., 2003; Topal, 2005; Apisarnthanarak et al., 2007; Fakih, Rey, Pena, Szpunar, & Saravolatz 2012; Roser et al., 2012; Adams, Bucior, Day, & Rimmer, 2012)



#### **Project Site Metric**

- By 2/1/15, implement content changes in the EHR to support Catheter Management Protocol and reduce overall urinary catheter days by 10%;
  - Include physician indication reason on urinary catheter order
  - Alert message to nurses based on catheter necessity documentation
  - Present EBG to support the nurses decision making about catheter removal
  - Compare pre and post alert implementation catheter days

#### **Project Site Metric**

By 8/10/15, reduce overall NTX CAUTI incidence rate by 10%:

• Compare pre and post implementation CAUTI incidence rate

### **Project Site Metrics**

- By 8/1/15, calculate potential cost avoidance based on overall decrease of NTX CAUTI incidence rate by 10%;
  - Compare pre and post alert implementation CAUTI incidence rates
  - Calculate and compare the rate of change between two time periods
  - Calculate decreased rate and calculate cost avoidance based on \$2,160 per avoided CAUTI
  - Calculate the cost savings based on elimination of manual tracking











# Retrospective Design • Quantitative, non-experimental, before and after comparative design • A retrospective data set from the electronic health record was used • Large data set representing the total population • Consecutive sample of all unique, EHR records with an urinary catheter order • Electronic data query contained records 3 months before and 3 months after implementation of alerts | Nov | Dec | Jan | Feb | March | April | May | Before | Before | Before | Not | used | After | After | After |

# **Evaluation approach**

- Consecutive sample of the total population of discharge unique patient records
- Total sample population contain 13,774 unique patient records
- Before comparison group to contain 6,838 unique patient records
- After comparison group to contain 6,935 unique patient records
- Data set query meeting the inclusion and exclusion criteria was cleaned and scrubbed prior to data analysis

|                        | a Anal                 | ,           |         |      | 0-     |       |
|------------------------|------------------------|-------------|---------|------|--------|-------|
| Demographic Characteri | stic Statistics - Cate | gorical Vai | riables |      |        |       |
|                        | Before g               | group       | After g | roup | Whole  | group |
| Characteristic         | n                      | %           | n       | %    | n      | %     |
| Gender                 |                        |             |         |      |        |       |
| Male                   | 2664                   | 38.9        | 2593    | 37.4 | 5257   | 38.2  |
| Female                 | 4177                   | 61.1        | 4345    | 62.6 | 8522   | 61.8  |
| Race                   |                        |             |         |      |        |       |
| White                  | 5523                   | 80.7        | 5296    | 76.3 | 10,819 | 78.5  |
| Non-white              | 1318                   | 19.3        | 1642    | 23.7 | 2960   | 21.5  |
| Age                    |                        |             |         |      |        |       |
| 18-34                  | 1153                   | 16.9        | 1299    | 18.7 | 2452   | 17.8  |
| 35-120                 | 5688                   | 83.1        | 5639    | 81.3 | 11,327 | 82.2  |
| Type of Unit           |                        |             |         |      |        |       |
| Med-Surg               | 6020                   | 88          | 5983    | 86.2 | 12,003 | 87.1  |
| ICU                    | 821                    | 12          | 955     | 13.8 | 1776   | 12.9  |
| Antibiotics            | 1571                   | 23          | 1572    | 22.7 | 3138   | 22.8  |
| No Antibiotic          | 5270                   | 77          | 5366    | 77.3 | 10.636 | 77.2  |





|              | Before group |      | After | After group |  |
|--------------|--------------|------|-------|-------------|--|
| Variable     | n            | Md   | n     | Md          |  |
| Age          |              |      |       |             |  |
| 18-34 years  | 1152         | 1.00 | 1299  | 1.00        |  |
| 35-120 years | 5688         | 2.00 | 5639  | 2.00        |  |
| Race         |              |      |       |             |  |
| White        | 5523         | 2.00 | 5296  | 2.00        |  |
| Non-White    | 1318         | 2.00 | 1642  | 2.00        |  |
| Gender       |              |      |       |             |  |
| Male         | 2664         | 2.00 | 2593  | 2.00        |  |
| Female       | 4177         | 2.00 | 4345  | 2.00        |  |
| Unit of Care |              |      |       |             |  |
| Med-Surg     | 6020         | 2.00 | 5983  | 2.00        |  |
| ICU          | 821          | 2.00 | 955   | 2.00        |  |
| Antibiotics  |              |      |       |             |  |
| No           | 5270         | 2.00 | 5366  | 1.00        |  |
| Yes          | 1571         | 4.00 | 1572  | 3.00        |  |







# **Importance to Nursing Informatics**

- Introduction of electronic alerts was significant in decreasing catheter days
- Strong research links decrease in catheter days to decrease incidence of CAUTI (comia et al., 2003; Topal et al., 2005; Apisamthanarak et al., 2007)
- Introduction of electronic alerts presented EBP at the time
  of decision making to cue nurses (American Nurses Association, 2015)
- The use of the PARIHS framework can organize and help evaluate implementation science projects
- Implementation of alerts and calculation by EHR decreases administrative burden
- Big data can be used to evaluate quality improvement projects

#### Acknowledgements

- Nursing & Physician Informatics Tamera Sutton Kim Acosta Sally Anderson Dr. Hussain
- EHR-NTX Team
   Kristin Kammrath
   Connell Cunningham
   Glen Lout
   Mike Fetros
- CNO/CMO Council
- Dr. Tona Leiker
- Dr. Ellen Harper
- Dr. Barbara Pate



#### References

Adams, D., Bucior, H., Day, G., & Rimmer, J. A. (2012). HOUDINI: Make that urinary catheter disappear-nurse-led protocol. Journal of Infection Prevention, 13(2), 44-46

American Nurses Association. (2015). Streamlined evidence-based RN tool: Catheter Associated Urinary Tract Infection (CAUTI) Prevention. Retrieved fro <a href="http://www.nursingworld.org/MainMenuCategories/ThePracticeofProfessionalNursing/Improving-Your-Practice/ANA-CAUTI-Prevention-Tool</a>

Apicarnthanarak, A., Thonghlubeth, K., Srinnaravog, S., Kitkangvan, D., Yuekyen, C., Warachan, B., ... Fraser, V. J. (2007). Effectiveness of multifaceted hospital wide quality improvement programs featuring an intervention to remove unnecessary urinary catheters at a tertiary care center in Thailand. Infection Control and Hospital Epidemiology, 28(7), 791-798. doi:10.1086/j.18453

Bernard, M. S., Hunter, K. F., & Moore, K. N. (2012). A review of strategies to decrease the duration of indwelling urethral catheters and potentially reduce the incidence catheter-associated urinary tract infections. Urologic Nursing, 32(1), 29-37.

Blodgett, T. I. (2009, September 1), Reminder systems to reduce the duration of indwelling urinary catheters: A narrative review. Unologic Nursing, 29(5), 369-37. Center for Medicare & Medicare Sciences. (2011). Alforotable Care Act A Stronger Medicare Program in 2012. Retrieved from http://www.cms.googlogo/files/Medicares/port/2012.pdf

Comia, P. B., Amory, J. K., Fraser, S., Salint, S., & Lipsky, B. A. (2003). Computer-based order entry decreases duration of indwelling urinary catheterization in hospitalized patients The American Journal of Medicine, 114, 404-407. doi:10.1016/S0002-9342[02]01568-1

Fakih, M. G., Rey, J. E., Pena, M. E., Sapunar, S., & Saravolatz, L. D. (2012, September 13). Sustained reductions in urinary catheter use over 5 years: Bedside nurses view themselv responsible for evaluation of catheter necessity. American Journal of Infection Control, 41(3), 236-239. doi:10.1016/j.ajic.2012.04.328

Gould, C. V., Umscheid, C. A., Agarwal, R. K., Kuntz, G., & Pegues, D. A. (2010). Guideline for prevention of Cotheter-Associated Uninary Tract Infections 2009 [Practice guideline Retrieved from Center of Disease Control website: http://cdc.gov/hicpsc/pdf/CAUTI/CAUTIguideline2009final.pdf

Greenes, R. A. (2014). Clinical decision support: The road to broad adaption (2nd ed.). San Diego, CA: Elsevier, Inc.

RISSON, A.L., Harvey, G., & McCormack, B. (1998). Enabling the implementation of evidence based practice: A conceptual framework. Quality in Health Care, 7, 149-158.

RISSON, A.L., Psycroft Ablaines, J., Harvey, G., McCormack, B., Seer, K., & Titchen, A. (2008). Evaluating the excessful implementation of evidence into practice using the PARIEST immerator. Therefore and partical challenges implementations of excision, 33(1) doi:10.1181/748-5988-3-1

Lo, E., Nicolle, L. E., Coffin, S. E., Gould, C., Maragalás, L. L., Meddings, J., ... Yokoe, D. S. (2014). Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infection Control & Hospital Epidemiology, 35(5), 464-479. doi:10.1086/675718

Loeb, M., Hunt, D., O'Halloran, K., Carusone, S. C., Dufoe, N., & Walter, S. D. (2008, April 18). Stop orders to reduce inappropriate urinary catheterization in hospitalized patients: A randomized controlled trial. Journal General Internal Medicine, 23(6), 816–80. doi:10.1007/s11609-008-0620-2

Meddings, J., Rogers, M. A., Krein, S. L., Fakih, M. G., Olmsted, R. N., & Saint, S. (2014). Reducing unnecessary urinary catheter use and other strategies to prevent catheter associated urinary tract infection: An integrative review. BMJ Quality & Sofety, 23, 277-289. doi:10.1136/bmigs-2012-001774

Melnyk, B. M. (2012). The role of technology in enhancing evidence-based practice, education, healthcare quality, and patient outcomes: A call for randomized controlled trials and comparative effectiveness research. Worldviews on Evidence-based Nursing, Second Quarter, 63-65. doi:10.111/j.1741-6787.2012.00245

#### References cont.

Palmer, J. A., Lee, G. M., Dutta-Linn, M. M., Wroe, P., & Hartmann, C. W. (2013). Including catheter-associated urinary tract infections in the 2008 CMS payment policy: A qualitative analysis. *Urologic Nursing*, 33(1), 15-23. doi:10.7257/1053-816X.2013.33.1.15

Roser, L., Altpeter, T., Anderson, D., Dougherty, M., Walron, J., & Merritt, S. (2012). A nurse driven foley catheter removal protocol proves clinically effective to reduce the incidents of catheter related urinary tract infections. E-Journal of American Journal of Infection Control, 40(5),

Rycroft-Malone, J., Harvey, G., Seers, K., Kitson, A., McCormack, B., & Titchen, A. (2004). An exploration of the factors that influence the implementation of evidence into practice. *Journal of Clinical Nursing*, 13, 913-924.

Saint, S., Wiese, J., Amory, J. K., Bernstein, M. L., Patel, U. D., Zemencuk, J. K., ... Hofer, T. P. (2000, October 15). Are physicians aware of which of their patients have indwelling urinary catheters? The American Journal of Medicine, 109, 476-480.

Solomons, N. M., & Spross, J. A. (2011). Evidence-based practice barriers and facilitators from a continuous quality improvement perspective an integrative review. *Journal of Nursing Management*, 19, 109-120. doi:10.111/j.1365-2834.2010.01144.x

Topal, J., Conklin, S., Camp, K., Morris, V., Bakezaik, T., & Herbert, P. (2005, May/June). Prevention of nosocomial catheter-associated urinary tract infections through computerized feedback to physicians and a nurse-directed protocol. *American Journal of Medical Quality*, 20(3), 121-

Welden, L. M. (2013, August 6). Electronic Health Record: Driving evidence-based Catheter-Associated Urinary Tract Infections (CAUTI) care practices. Online Journal Informatics Nursina. 18(3). doi:10.3912/OJIN.Vol18No03PPT02

